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The Stability of Three-Body Atomic and Molecular Ions 
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Chemistry has all to do with binding, superficially 
with the binding of atoms and ions to form molecules 
and crystals, and more fundamentally with the binding 
of negatively charged electrons and positively charged 
nuclei. The simplest chemical molecule is the hydrogen 
molecular ion H2+, consisting of two protons (p+) bound 
together in ita ground state by a single electron (e-), 
that is, p+e-p+. Another three-particle ion of great 
importance in chemistry and astrophysics is the hydride, 
or negative hydrogen ion, H-, which consists of two 
electrons bound by a single proton, that is, e-p+e-. In 
contrast to H2+, which has a large number of bound 
states in which neither of the protons can escape to 
infinity leaving behind an H atom, H- has a much more 
marginal existence, having only two bound states, a 
weakly bound singlet ground state and an even more 
weakly bound triplet excited state. 

Nowadays the number of three-particle ions of 
interest has greatly increased because of the relative 
ease of production of deuterons and tritons (d+ and t+), 
of muons (p+ and p-), and of antiparticles such as the 
positron (e+) and antiproton (p-). Thus new branches 
of chemistry of short-lived atoms and ions have grown 
up based on positronium (Ps = e+e-), muonium (Mn = 
p+e-), and protonium (Pn = p+p-) and ita isotopes. Not 
all the ions of these species exist, that is, have one or 
more stable states with energies lower than those of the 
most stable ion pair. For example, the protonium ion 
Pn- (=e-p+p-) and the ion e+H (=e+e-p+) do not exist, 
but the positronium ions Ps- (=e-e+e-) and mesic-Hz+ 
(=p+p-p+) do exist, and indeed the lifetime of Ps- was 
measured by Mills' in 1981,35 years after its existence 
was first predicted by Wheelera2 

There are 36 different singly-charged ions made up 
of e, p, and p particles and antiparticles, of which 16 
have distinct mass ratios. If d and t are included, the 
number is 150, of which 71 have distinct mass ratios. 
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It is not at all obvious which of these ions are stable and 
which are not. A few of them are of great interest for 
muon-catalyzed nuclear fusion, in particular the isotope 
of mesic-H2+, d+pt+, which has a weakly bound excited 
state with energy 0.66 eV which plays a crucial role in 
the muon-catalyzed fusion cycle.3 The subject is thus 
not only of academic interest, and the object of this 
Account is to attempt to formulate the stability problem 
in the simplest way, to describe the main results that 
have been achieved so far, and to propose a simple 
stability diagram (which should appeal to chemists) to 
systematize the results. 

Critical Binding Energy 

The existence or otherwise of a stable state clearly 
depends on the masses of the three particles. Let us 
consider the general case of three subatomic particles 
of masses ml, m2, and m3, each having unit electronic 
charge e with one, say particle 2, having opposite sign 
from the other two. The energy and binding will not 
be affected by the sign of the charge, which we take to 
be negative. The three-particle ion therefore has a net 
positive charge and can be written ml+m2-m3+. With 
no loss of generality we can take particle 1 to be the 
lighter of the pair 1,3, so that ml < m3. This means 
that if the trio is marginally unstable it will break up 
into the heavier bound pair 2,3 (m2m3+) and the isolated 
particle 1 at rest at infinity, since the energy of a two- 
body Coulombic system is proportional to ita reduced 
mass (see below). 

We can now define the binding energy AE of the ion 
by 

AE = Eion(ml,m2,m3) -Ethr(m2,m3) (1) 
where the ground-state energy of the two-body "atom" 
2,3 is given by nonrelativistic quantum mechanics as 

where h is the Dirac constant (Planck's constant h/27r) 
and pZ3 is the reduced mass of 2,3 given by 

(3) 
For stable binding, AE < 0, and for critical binding, AE 
= 0. 

Upz3 = l / n 2  + l /m3 

(1) Mills, A. P. Phys. Rev. Lett. 1981, 46, 717. 
(2) Wheeler, J. A. Ann. N.Y.  Acad. Sci. 1946, 46, 221. 
(3) Ponomarev, L. I. Contemp. Phys. 1990, 31, 219. 
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The three-particle energy Eion(ml,mn,ms) appearin 

of the system corresponding to zero total linear and 
angular momenta, where 

in eq 1 is the lowest eigenvalue of the Hamiltonian fi 

it2 2 e2 e2 e2 v, -r-- + - (4) 
12 r23 r31 

The Schriidinger equation for this Hamiltonian cannot 
be solved analytically, any more than the classical 
equations of motion for three bodies interacting with 
Coulombic or gravitational forces can be solved exactly. 
However, recently the advent of high-speed computers 
has opened up a whole new approach to these problems 
by making it possible to solve the quantal and classical 
equations numerically for given masses to a very high 
degree of accuracy. Nevertheless, the computational 
effort involved is such that the critical mass ratios at 
which bound states appear have not yet been estab- 
lished. Despite the lack of definitive results, a lot of 
progress can be made in understanding the problem by 
using general relationships and considering a few special 
cases. 

Ternary Stability Diagram 
It follows from eq 1 and the Hamiltonian 4 that the 

stability limits depend only on the ratio of the masses, 
and not on their absolute values. It can also be seen 
from eq 4 that the mass parameters which occur linearly 
in the Hamiltonian are not the masses themselves but 
their reciprocals, l / m l ,  l/m2, and llm3. These consid- 
erations suggest that the most appropriate parameters 
for describing the mass composition of a three-particle 
ion are the reciprocal mass fractions defined by 

x 1  = d m , ,  x 2  = d m , ,  x 3  = d m ,  (5)  

1 I p  = l / m ,  + l / m 2  + l / m ,  (6) 
It follows that only two of the x’s are independent since 

x 1  + x 2  + x ,  = 1 (7) 
It is well-known that in chemical thermodynamics 

the variations in concentration of three-component 
mixtures can be conveniently expressed by means of a 
triangular or ternary diagram (see, for example, 
Bowden) Prigogine and Defay? and Martin et al.9. In 
the most popular method the composition of the mixture 
is represented by a point within an equilateral triangle 
of unit side. The vertices of the triangle correspond to 
the pure components, say 1 , 2 ,  and 3. The fraction x1 
of the first component is equal to the distance of the 
point from the side 23 along a line parallel to side 12. 
Elementary geometry ensures that the sum of the 
fractions satisfies eq 7. 

Note that in the notation of Martin et ale6 particles 
2 and 3 have the same charge. Also, for a given point 
on their diagram, xi = ai is taken to be the perpendicular 
distance of the point from the side jk # i ,  k # i ) ;  in 
this case the sides of the equilateral triangle have to be 
of length 2 /31 /2  units for eq 7 to be satisfied. 

where 

(4) Bowden, S. T. The Phase Rule and Phase Reactions: Theoretical 

( 5 )  Prigogine, I.; Defay, R. Chemical Thermodynamics; Longman: 

(6) Martin, A.; Richard, J.-M.; Wu, T. T. Phys. Rev. A 1992,46,3697. 

and Practical; Macmillan: London, 1938; p 242 ff. 

London and New York, 1954; p 182 ff. 
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Figure 1. Reciprocal mass fraction ternary diagram for three- 
particle ions ml+mz-m3+ (or mlmz+m3-), showing systems which 
are stable according to Poshustaz2 as open circles, and those not 
possessing a bound state as solid circles. The dashed and dotted 
lines are Poshusta’s variational estimate of the critical binding 
curves. 

I reciprocal riiass Craction o f  3 3 

Figure 2. Reciprocal mass fraction ternary diagram for three- 
particle ions m1+m2-m3+ (or mlmz+m3-) showing all possible 
systems composed of e, p ,  p, d, and t as crosses. The two straight 
dashed lines are the critical binding curves predicted by a crude 
argument based on the critical dipole moment to bind a particle. 

We can use such a ternary diagram with reciprocal 
mass fractions defined by eq 6 to represent the relative 
composition by mass of any three-particle ion ml+- 
m21113+. Thus vertex 1 corresponds to particles 2 and 
3 being infinitely massive compared to 1, while side 13 
corresponds to particle 2 being infinitely massive 
compared to 1 and 3, and so on. Figure 1 shows a 
diagram of this type with small labeled circles to indicate 
the mass compositions of some of the well-known or 
interesting ions. In Figure 2 the crosses indicate all 
three-particle ions made up of e, p,  p, d, and t. Note 
that the diagrams are symmetrical about the altitude 
through m2-, corresponding to the interchange of ml+ 
and m3+. We shall refer to this altitude as the symmetry 
axis of the diagram. 

A very rough but illuminating argument can be given 
to suggest the areas of binding on the diagram, based 
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on the critical dipole for binding an electron calculated 
by Byers Brown and Roberts' and others.a10 Consider 
the case when m2- and m3+ are sufficiently larger than 
ml+ that we can use the Born-Oppenheimer approx- 
imation for the motion of ml+ in the field of m~-m3+. 
If we neglect ml+, m2-m3+ will move around their center 
of mass with an average separation (and hence instan- 
taneous dipole moment) of 1Ip2 = llmz + lIm3, in 
atomic units (e = h = me = 1). Now the critical value 
of the dipole to bind a particle of mass ml with electronic 
charge is D 2 0.639/m1.7-10 Equating these two, we get 

Armour and Byers Brown 

(ii) Each Half of the Region of Instability is 
Convex. That Is, Apart from Its End Points, the 
Straight Line Joining Any Two Points on the 
Boundary of the Region of Stability Lies Entirely 
within the Region of Instability. The proof of this 
result is more difficult, and the interested reader is 
referred to the paper by Martin et aL5 

As these authors point out, the rigorous results i and 
ii do not exclude the possibility that the stability region 
could consist of two separated domains, with a hole of 
instability near the center of the triangle. However, 
the proof by Hill13 that every system that lies on the 
symmetry axis (i.e., ml = m3) is stable demonstrates 
that the stability region must take the form of a 
connected band in the middle of the ternary diagram. 

Methods for Obtaining Information about 
Bound States of the Three-Body System 

(i) The Rayleigh-Ritz Variational Method. If 
we separate off the center of mass motion (see, for 
example, Bransden and Joachain14) and take the origin 
to be at particle 3 (say), in atomic units the Hamiltonian, 
l?int, for the internal motion of the three particles takes 
the form 

0.639 llm, + l/m3 Z - 
m1 

or 

x 2  + x3 Z 0 . 6 3 9 ~ ~  

or 

x1 d 0.610 
Thus, according to this argument, the system will be 

bound if x1 d 0.610 or, if we interchange ml+ and m3+, 
x3 d 0.610. The critical values lie on the straight lines 
represented by dashes on Figure 2. 

General Properties of the Boundary of the 
Region of Stability 

Two general properties of the boundary of the region 
of stability have recently been established by Martin 
et al.5 

(i) A Straight Line on the Ternary Stability 
Diagram from a Lower Corner of the Diagram to 
the Symmetry Axis Crosses the Boundary at Most 
Once. The proof of this result is straightforward. If 
(ml, m2, m3) is stable with m3 > ml (say), then if ml 
increases with m2 and m3 unchanged, the threshold 
energy, Eth,(mz,m3), remains constant. However, it 
follows, from the lower bound property of the ground- 
state energy (see, for example, Pauling and Wilsonll 
and Bransden and Joachainlz) and the fact that kinetic 
energy expectation values are always positive, that Eion-  
(m1,m2,m3) must decrease, thus increasing the stability 
of the system. In terms of the reciprocal mass fractions, 
(x i ) ,  increasing ml while keeping m2 and m3 constant 
corresponds to decreasing x1 while keeping ~ 2 1 x 3  con- 
stant. Also m3 > ml implies that x3 < x1. It follows 
that, on the ternary diagram, increasing ml while 
keeping ml < m3 and m2 and m3 constant corresponds 
to motion to the right along a straight line from the left 
lower corner of the diagram to some point on the 
symmetry axis. 

The result we have deduced about the increase in 
stability shows that once such a line enters the region 
of stability, it can never leave it. It follows from the 
symmetry of the diagram that this must also hold for 
a straight line from the right lower corner to some point 
on the symmetry axis. 

(7) Byers Brown, W.; Roberts, R. E. J. Chem. Phys. 1967,46, 2006. 
(8) Mittleman, M. H.; Myerscough, V. P. Phys. Lett. 1966, 23, 545. 
(9) LBvy-Leblond, J. M. Phys. Rev. 1967, 153, 1. 
(10) Coulson, C. A.; Walmsley, M. R o c .  Phys. Soc., London 1967,91, 

(11) Pauling,L.; Wilson,E. B., Jr.lntroductiontoQuantumMechanics; 

(12) Bransden, B. H.; Joachain, C. J. Physics of Atoms and Molecules; 

31. 

McGraw-Hill New York and London, 1935; Chapter VII. 

Longman: London and New York, 1983; p 116 ff. 

where rl and r2 are the position vectors of particles 1 
and 2, respectively, with respect to the third particle 
as origin. The Hamiltonians 4 and 8 are equivalent if 
the total linear momentum of the ion is 0. R i n t  
represents the motion of two particles (more properly, 
pseudoparticles) of mass p13 and p23, respectively. It 
differs from the usual form for the Hamiltonian for two 
particles as it contains a coupling term between the 
momenta of the particles. This is known as the Hughes- 
Eckart or mass polarization term (Hughes and Eckart,15 
Bethe and Salpeter,16 and Bransden and Joachain14). 
If desired, it can be eliminated by transforming to Jacobi 
coordinates see, for example, Messiah1'). Any eigen- 
function of h i n t  for which E i o n  < E t h r  will be square- 
integrable.18 We define such a state to be a bound state. 
As was pointed out earlier, no exact solution exists to 
the problem of quantum mechanical motion with the 
Hamiltonian, However, the Rayleigh-Ritz vari- 
ational method (see, for example, Pauling and Wilsonll 
and Bransden and Joachain12), which is very widely 
used in quantum chemistry, can often be used to prove 
the existence of a bound state. More generally, the 
Hylleraas-Undheim t h e ~ r e m ~ ~ J ~ J ~  makes it possible to 
use the variational method to obtain a lower bound on 
the number of bound states, Nb. It follows from this 
theorem that if there are n approximate eigenfunctions 
with energy expectation values below Ethr ,  then 

(13) Hill, R. N. J. Math. Phys. 1977,18, 2316. 
(14) Bransden, B. H.; Joachain, C. J. Physics of Atoms and Molecules; 

Longman: London and New York, 1983; p 642 ff. 
(15) Hughes, D. S.; Eckart, C. Phys. Reu. 1930,36,694. 
(16) Bethe, H. A.; Salpeter, E. A. Quantum Mechanics of One and 

Two Electron Atoms; Springer-Verlag: Berlin, 1957; p 166. 
(17) Messiah, A. Quantum Mechanics; North Holland: Amsterdam, 

1970; Vol. I, p 365. 
(18) Hunziker, W. Helu. Phys. Acta 1966,39, 451. 
(19) Hylleraas, E. A.; Undheim, B. 2. Phys. 1930, 65, 759. 
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Nb 3 n (9) 
However, it cannot give an upper bound on Nb. In 
particular, the method fails completely if, despite all 
efforts to make the trial function as flexible as possible, 
n is found to be 0. 

It has been possible to show using this method that 
bound states exist for many three-body Coulombic 
systems. Once a bound state has been shown to exist, 
the method can then be used to obtain an accurate 
energy and wave function for the bound state. Thus 
the method has been successfully applied to Hz+ and 
related isotopes (see, for example, Bates et al.,20 Kolos 
et and PoshustaZ2), H- and related isotopes (see, 
for example, Bethe,23 Hylleraa~?~ P e k e r i ~ , ~ ~  and Frolov 
and YereminZ6), e-e+e- (see, for example, Wheeler,2 
Kolos et al.,21 H o , ~ ~  Bhatia and DrachmaqZ8 Frol- 
0v,29,30 Petelentz and Smith,31 and Frolov and Yerem- 
in26), and several three-body systems involv- 
ing a muon or an artificial particle (see, for example, 
Kolos et Bhatia and D r a ~ h m a n , ~ ~ ? ~ ~  H u , ~ ~  Frol- 
O V , ~ ~  Hara et al.,35 Petelentz and Smith,31s6 Korobov et 
al.,37 K a m i m ~ r a , ~ ~  Scrinzi et al.,39 and Frolov and 
Yeremin26). 

An interesting case in which the variational method 
fails is e+H. However, Inokuti et aL4* were able to show 
by this method that if the mass, m3, of the proton is 
taken to be infinite, a “positron” of mass ml 3 7.8me 
where m2 = me is the mass of the electron, would be 
bound. 

reduced this upper bound to 2.625me by 
using a more flexible trial function. It was reduced 
still further to 2.20~71, by Rotenberg and Stein.42 They 
made their trial function even more flexible by including 
basis functions suitable for representing a weakly bound 
particle in a potential with the appropriate asymptotic 
form for an H atom and a positron (see, for example, 
Bransden and J ~ a c h a i n ~ ~ ) ,  

Frost et 

V(rl),.l+m - -a/2r,4 (10) 
where a is the dipole polarizability of the H atom. 

The overall system has been studied for general mz/ 
ml and ml/m3 by Poshusta22 using the variational 

(20) Bates, D. R.; Ledsham, K.; Stewart, A. L. Philos. Trans. R. SOC. 

(21) Kolos, W.; Roothaan, C. C. J.; Sack, R. A. Rev. Mod. Phys. 1960, 
London 1953, A246,215. 

32. 178. 
~I ~ 

(22) Poshusta, R. D. J. Phys. B 1985,18, 1887. 
(23) Bethe, H. A. 2. Phys. 1929,57, 815. 
(24) Hylleraas, E. A. 2. Phys. 1930, 63, 291. 
(25) Pekeris, C. L. Phys. Reu. 1962,126, 1470. 
(26) Frolov, A. M.; Yeremin, A. Yu. J. Phys. B 1989,22, 1263. 
(27) Ho, Y. K. J. Phys. B 1983, 16, 1503. 
(28) Bhatia, A. K.; Drachman, R. J. Phys. Reu. A 1983,28, 2523. 
(29) Frolov, A. M. Z. Phys. D 1986,2, 61. 
(30) Frolov, A. M. Zh. Eksp. Teor. Fiz. 1987,92, 1959. 
(31) Petelentz, P.; Smith, V. H., Jr. Phys. Rev. A 1987, 36, 5125. 
(32) Bhatia, A. K.; Drachman, R. J. Phys. Rev. A 1984, 30, 2138. 
(33) Bhatia, A. K.; Drachman, R. J. Phys. Rev. A 1987, 35, 4051. 
(34) Hu, C. Y. Phys. Rev. A 1985,32,1245. 
(35) Hara, S.; Ishihara, T.; Toshima, N. J. Phys. SOC. Jpn. 1986,53, 

(36) Petelentz, P.; Smith, V. H., Jr. Phys. Reu. A 1987, 36, 4078. 
(37) Korobov, V. I.; Puzynin, I. V.; Vinitsky, S. I. Phys. Lett. B 1987, 

(38) Kamimura, K. Muon Catal. Fusion 1988,3, 335. 
(39) Scrinzi, A.; Monkhorst, H. J.; Alexander, H. A. Phys. Rev. A 1988, 

(40) Inokuti, M.; Katsuura, K.; Mimura, H. Prog. Theor. Phys. 1960, 

(41) Frost, A. A.; Inokuti, M.; Lowe, J. P. J. Chem. Phys. 1964,41,482. 
(42) Rotenberg, M.; Stein, J. Phys. Rev. 1969, 182, 1. 
(43) Bransden, B. H.; Joachain, C. J. Physics of Atoms and Molecules; 

3293. 

196, 272. 

38,4859. 

23,186. 

Longman: London and New York, 1983 p 511 ff. 
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method with basis sets made up of Singer-type geminal 
functions (Singer4). His results give a good overall 
picture of the region of stability in which at least one 
bound state exists. However, a variational calculation 
necessarily underestimates this region. This under- 
estimation is increased to some extent, by his use of 
Singer-type geminal functions. They are Gaussian-type 
functions and are not as well-suited for taking into 
account the Coulombic interaction as the Hylleraas- 
type functions used in highly accurate calculations of 
three-body Coulombic systems. 

The two dashed and dotted curves on Figures 1 and 
2 indicate the boundary of the region of stability as 
calculated by PoshustaZ2 using the variational method. 
Points in the central region between the curves rep- 
resent systems which have at least one bound state. 
The kink in each curve is an artifact of Poshusta’s 
plotting procedure. We can see that the boundary 
obtained by using the critical dipole argument is 
quantitatively correct. 

H2+, p+e-p+, p+p-p+, d+p-d+, t+p-t+, Ps-, p+p-p+, e-p+e-, 
and H- are all systems for which the two particles which 
have the same charge also have the same mass. They 
thus lie on the altitude through m2-, about which the 
region of stability is symmetrical. Hill’s work13 de- 
scribed earlier shows that they must all have at least 
one bound state. p+p-d+ and d+p-t+ are examples of 
systems which lie within the calculated region of 
stability whereas d+p-t+, p+p-d+, e+p-p+, e-p+p-, and 
e+p-p+ are examples of systems which do not. However, 
d+p-t+ is very close to the boundary and Poshusta 
considers it is probably within the true region of 
stability. This has indeed been shown to be the case 
recently by Frolov and Thakkar45 using the variational 
method and a trial function made up of terms which 
are exponential in each of the interparticle distances. 
By contrast, p+p-d+ is quite deep in the unstable region 
and probably does not lie in the true region of stability.22 

(ii) Determination of Lower Bounds to the 
Eigenvalues of the System. Suppose the variational 
method fails because no approximate eigenfunction is 
obtained with energy expectation value less than Etb. 
The absence of a bound state can still be proved if a 
lower bound to the lowest eigenvalue of the system is 
obtained and this lower bound is not less than Ethr. 
More generally, if an upper bound on the number of 
bound states is required, a lower rather than an upper 
bound to the eigenvalues of the system is required. This 
is, in general, much more difficult to obtain ( S p r u ~ h ~ ~ ) ,  

It is usually done by making use of the comparison 
theorem (see, for example, HillI3). This theorem states 
that if two Hamiltonians R1 and R2 are such that 

(+WllW 6 WW2lW (11) 
for any allowed square-integrable function \k, then 

E‘1’ 6 thr 

where E(& is the energy at which the continuum 
threshold (if any) of begins. Also, if l?l and f& have 
at least n bound states and the mth bound state off& 

(44) Singer, K. Proc. R.  SOC. London, A 1960,258,412. 
(45) Frolov, A. M.; Thakkar, A. J. Phys. Reu. A 1992,46, 4418. 
(46) Spruch, L. In Lectures in Theoretical Physics, Atomic Collision 

Processes Vol. 11; Geltman, S., Mahanthappa, K. T., Britten, W. E., Eds.; 
Gordon and Breach New York, 1969 p 57 ff. 
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has energy E:), then 
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then calculating the ground-state energy of the electron 
in the resulting two-center attractive Coulombic po- 
tential. 

It is easy to show that 81 = R a d  and RZ = Rint as 
above satisfy eqs 11 and 14. The proof of eq 11 is similar 
to Epstein's proof that the ground-state energy of a 
molecule in the adiabatic approximation is a lower 
bound to the true energy of the ground state. Hence 
if no bound state of R a d  exists, no bound state of Rjnt 
exists. It is usual to adjust the potential in an essentially 
one particle Hamiltonian such as R a d  so that it tends 
to 0 as rl tends to infinity. Thus the problem of showing 
that R a d  and hence aht have no bound states reduces 
to the problem of showing that the potential, V(r) ,  
cannot support a bound state, where 

In addition, if 

and R1 has exactly n bound states, then n is an upper 
bound to the number of bound states of 

In practical applications of this theorem, & is taken 
to be the original Hamiltonian for the problem, while 
Rl is the Hamiltonian of a more tractable system. Using 
the variational method described earlier, HW3 was able 
to prove that Coulombic systems with ml = m3 always 
have at least one bound state, irrespective of the value 
of m2. By taking RZ to be with origin at  particle 
2 and a Hamiltonian for which the SchrBdinger 
equation is reducible to one-particle equations, he was 
able to prove further that these systems have only one 
bound state if mzlml< 0.210 106 36. 

It follows from the above theorem that if eq 4 holds 
and has no bound states, then i'?2 also has no bound 
states. This result was used by Spruch& to devise a 
method for showing that no bound state of the e+H 
system exists if the mass of the proton is taken to be 
infinite. 

In this case Rint is as in eq 8 and can thus be expressed 
in the form 

where 

is the Hamiltonian for an electron in the field of two 
equal, fixed positive charges, one at the origin and the 
other at rl. Now Re is just the Hamiltonian which 
determines the electronic potential energy of the H2+ 
ion in the Born-Oppenheimer approximation (see, for 
example, Pauling and Wilson4' and Bransden and 
Joachain4*). The associated Schriidinger equation is 
separable in prolate spheroidal (confocal elliptical) 
coordinates. The eigenvalues of Re are functions only 
of rl, and the separability of the Schriidinger equation 
makes it possible to calculate them to high accuracy 
(Bates et and Wind49). 

Let us consider the adiabatic Hamiltonian 

where 

and f(r2) is the unit operator for allowed square- 
integrable functions of r2 and E&) is the ground-state 
eigenvalue of Re. It is referred to as adiabatic because 
the potential term, Eo(rl), is calculated by fixing rl and 

(47) Pauliig,L.; Wilson, E. B., Jr.Zntroduction toQwntumMechunics; 
McGraw-Hill: New York and London, 1935; Chapter X. 

(48) Bransden, B. H.; Joachain, C. J. Physics of Atom and Molecules; 
Longman: London and New York, 1983; Chapter 9. 

(49) Wind, H. J. Chem. Phys. 1965,42, 2371. 
(50) Epstein, S. T. J. Chem. Phys. 1966,44, 836. 

and 

1 
7- 2 

V(r) is a central potential, i.e., it is spherically 
symmetric. Though it depends on the single radial 
variable, r ,  it is a potential in three dimensions. This 
is very important. Any attractive well potential can 
bind a particle in one dimension (see, for example, 
Landau and Lifshitz51), but in three dimensions it has 
to exceed a critcal strength to produce binding (see, for 
example, D y ~ o n ~ ~  p 1225, and Wu and Ohmura53). 

Ways of calculating the number of bound states which 
V(r) can support have been extensively studied (Barg- 
mann54 and S~hwinger5~). As V(r) - 0 more rapidly 
than r2 as r - = and behaves like r1 as r + 0, a necessary 
but not sufficient condition for V(r) to be able to support 
Mi) bound states corresponding to angular momentum 
1 for a particle of mass m is that 

E$' = lim Eo(r) = ground-state energy of H = - -m2 

where 

V-(r) = 0 V(r)  > 0 

This is usually referred to as the Bargmann- 
Schwinger result.& Also, important information about 
the number of bound states can be obtained by an 
analysis of the phase shift of particles of mass m 
scattered by V(r) (see, for example, Burke%). 

The exact number of bound states of the system for 
a given 1 value can be obtained by determining the 
number of zeros (other than at r = 0) in the regular 
solution to the radial SchrBdinger equation with po- 
tential V(r)  and energy E = 0 (Bargmann"). This is 

(51) Laundau, L. D.; Lifshitz, E. M. Quantum Mechanics, 3rd ed.; 
Pergamon Press: Oxford, 1977; p 66. 

(52) Dyson, F. J. Phys. Rev. 1956, 102, 1217. 
(53) Wu, T.-Y.; Ohmura, T. Quantum Theory of Scattering; 

Prentice-Hall: Englewood Cliffs, NJ., 1962; p 69 ff. 
(54) Bargmann, V. Proc. Natl. Acad. Sci. U.S.A. 1952,38,961. 
(55) Schwinger, J. Proc. Natl. Acad..Sci: U.S.A. 1961, 47, 122. 
(56) Burke, P. G .  Potential Scatterrng tn Atomic Physics; Plenum 

Press: New York, 1977; Chapter 7. 
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usually done by step-by-step numerical integration on 
a computer. 

found that when m is 
the mass of the positron, V(r)  as given in eq 19 could 
support one bound state. Thus their attempt to prove 
that e+H has no bound states failed. 

were able to get around 
this difficulty. The ground state of e+H is an S state. 
By making an adiabatic separation in which rl ,  and not 
r1 as previously, is fixed, Aronson et al. were able to 
obtain a new adiabatic Hamiltonian, p e d ,  having the 
following properties: 

Unfortunately, Gertler et 

Fortunately, Aronson et 

where 9(rl,rz) is any allowed square-integrable function 
of S symmetry. In addition, p a d  and R i n t  have the 
same continuum threshold, -(1/2)m2. Thus if p a d  has 
no bound states, this is also true for P i n t .  

The potential V’(r) associated with p a d  is of the form 

where E’&) E&). Aronson et showed that it is 
extremely unlikely that V’(r) can support a bound state 
and hence it is highly probable that no bound state of 
e+H exists. This result is supported by information 
from scattering calculations (Humber~ton~~).  Aronson 
et al. showed further that it is highly probable that no 
bound state of e+H exists for ml<  1.46me and m2 = me. 

However, Aronson et al.58 were unable to establish 
their conclusion rigorously. ArmourG0 made their 
method of proof rigorous. Using the variational method 
and basis functions in terms of prolate spheroidal 
coordinates, he first of all calculated a very accurate 
wavefunction for the system described by pe, the 
analogue of Re in this adiabatic separation. He was 
able to calculate a good lower bound to V’(r) using this 
wavefunction and the method of TempleG1 and Kato@ 
and show that this lower bound, and hence V’(r), could 
not support a bound state. In a later paper, Armour 
and S ~ h r a d e r ~ ~  showed that if ml = 1.51me and m2 = 
me, no bound state of the e+H system exists. To date 
this is the best lower bound on the critical positron 
mass required for binding. 

So far we have assumed that the mass, m3, of the 
proton in the e+H system is infinite. In this case it is 
the ratio m1/m2 which determines whether or not a 
bound state exists. It follows that Armour’s result60 
for the case ml = m2 = me shows that this Hamiltonian 
has no bound state for ml = m2, whatever the value of 
m2. It follows from this that if the system is to have 
a bound state when m3 is finite and thus 

(57) Gertler, F. H.; Snodgrass, H. B.; Spruch, L. Phys. Rev. 1968,172, 

(58) Aronson, I.; Kleinman, C. J.; Spruch, L. Phys. Reu. A 1971,4,841. 
(59) Humberston, J. W. Adv. At .  Mol. Phys. 1986, 22, 1. 
(60) Armour, E. A. G. J .  Phys. B 1978,11, 2803. 
(61) Temple, G. h o c .  R. Soc. London, A 1928,119, 276. 
(62) Kato, T. J .  Phys. SOC. Jpn. 1949, 4 ,  334. 
(63) Armour, E. A. G.; Schrader, D. M. Can. J .  Phys. 1982, 60, 581. 
(64) Armour, E. A. G. Phys. Rev. Lett. 1982, 48, 1578. 
(65) Armour, E. A. G. J .  Phys. B 1983, 16, 1295. 
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this must be due to the presence of the mass polarization 
term. As pointed out earlier, e-e+e- (and hence e+e-e+) 
is known to have a bound state (Wheeler2). Its existence 
must be due to the large mass polarization term in this 
case. 

This term can be taken into account with a method 
by A r m ~ u r . ~ ~  He was able to show that no bound state 
of Z?inint exists if the Hamiltonian 

where 

m3 + m2 

m3 - m2 
Q =  

does not have a bound state. p h t  represents the 
internal motion, in the infinite proton mass approxi- 
mation, of a system made up of a “positron” of the 
usual mass but with charge Q and an “electron” of mass 
p23 and the usual charge. 

As l?ht does not involve the mass polarization term, 
the method described earlier can be applied to it. In 
the case of e+H, 

Q = 1.0011 and ~ 2 3  = 0.9995me 

Thus it is not surprising that Armour64 was able to show 
that no bound state of e+H exists, even if the finite 
mass of the proton is taken into account. 

Armour65 also applied his method to e+e-p+ for which 

Q = 1.01 and p2 = 0.995me 
and to e+p-p+ for which 

Q = 1.254 and ~ 2 3  = 186me 

He was able to show that no bound states of either 
system exist. 

The positions on the ternary diagram of the three 
unstable ions e+e-p+, e+e-p+, and e+p-p+ considered 
above are all close to the left-hand side of the diagram 
and far away from the stable region as determined 
variationally by Poshusta.22 They are thus of little help 
in determining a useful upper bound to the region of 
stability. However, we have seen that 2.20meand 1.6lme 
are upper and lower bounds, respectively, to the critical 
mass at which a positron, an electron, and an infinitely 
massive proton would just form a bound ~ t a t e . ~ 2 3 6 3  It 
follows from this that the intercept of the exact 
boundary of the region of stability on the left-hand 
side of the ternary diagram must lie between X I =  0.31 
and x1 = 0.40. There does not appear to be an analogous 
result giving bounds on its intercept with the base of 
the diagram. 

We wish to thank R. D. Poshusta (Washington State 
University, Pullman, WA) for his help with the preparation 
of this Account. We wish also to thank A. Martin, J.-M. 
Richard, and T. T. Wu and A. M. Frolou and A. J. Thakkar 
for sending us their articles prior to publication. We are 
very grateful to Jo Frampton for typing the manuscript. 


